China Good quality Four-Axis Precision CNC Machining Hydrodynamic Fluid Coupling

Product Description

Four-axis precision CNC machining hydrodynamic fluid coupling

   Muyang machinery is a manufacturer with the capability of comprehensive services of casting, forging, and machining, committed to the production of customized parts. Since established in 2002 (former Miaosen Machinery Co., Ltd), we’ve been supplying to the global market for over 15 years, serving industries including automotive, railway, gas and oil, medical machinery, construction machinery, gym equipment, etc.

Capability

CNC machining center –

MAX size: 600*1200*500mm

General tolerance: ±0.005mm

Machine qty: 6 sets     

CNC Milling –

MAX size: 1200*500mm

General tolerance: ±0.02mm

Machine qty: 12 sets        

CNC turning –

MAX size: φ0.5-φ800*1000mm

General tolerance: ±0.005mm

Machine qty: 35 sets       

Service:

CNC turning, CNC milling, CNC grinding, CNC lathe machining, CNC boring, CNC drilling, CNC tapping, surface treatment, etc.

Material available

Stainless steel: SS201, SSS301, SS303, SS304, SS316, SS416, SS440C etc.

Steel: Mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#

Brass/Bronze: HPb63, HPb62, HPb61, HPb59, H59, H68, H80, H90, C360, C260, C932

Copper: C11000, C12000, C36000

Aluminum: AL2017, AL2571, AL5052, AL5083, AL6061, AL6063, AL6082, AL7075

Iron: A36, 45#, 1213, 1214, 1215

Others per customers’ requirements

Surface finish

Aluminum alloy: Clear anodized, color anodized, sandblast anodized, hard anodized, brushing, polishing, powder coated, and painting

Brass/copper/steel: Nickel plating, chrome plating

Steel/Stainless steel: Zinc plating, oxide black, carburized, heat treatment, nitriding

Measuring tools

Micrometer, calipers, thread tools, high gauge, trapezoidal thread plug gauge, sclerometer, dial indicator, projector

 

 

 

We promise our clients a careful, safe, and tight package for exporting!

Standard packing: pearl cotton/bubble bag + carton box + pallet/wooden box

Special packingcustom packaging + wooden box

FAQ:

1. Are you a manufacturer or trading company?
We’re a manufacturer with self-export rights. 

2. What’s your main business?
Our main business is custom metal parts processed by CNC machining, casting, forging, etc., serving industries including railway, automobile, construction machinery, gym equipment, water gas, and oil.

3. Directly get to CONTACT or send your product drawing/inquiries to email, we will reply within 0.5 hours.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Fluid Couplings in Conjunction with Electric Motors

Yes, fluid couplings can be used in conjunction with electric motors to provide a reliable and efficient power transmission solution. When coupled with an electric motor, the fluid coupling serves as a mechanical torque converter, enabling smooth start-ups and gradual acceleration of the driven load.

The combination of a fluid coupling and an electric motor offers several advantages:

  • Soft Start: When the electric motor is switched on, it accelerates gradually as the fluid coupling allows the torque to build up slowly. This soft start feature reduces mechanical stress on the driven equipment and minimizes the impact on the electrical supply, preventing voltage drops and surges.
  • Overload Protection: Fluid couplings can automatically disengage when the load exceeds a certain threshold, providing overload protection to both the motor and the driven equipment. This feature helps prevent damage to the system during abrupt load changes or stall conditions.
  • Vibration Damping: The fluid in the coupling acts as a damping medium, reducing vibration and shock loads during start-ups and sudden load changes. This contributes to smoother operation and extends the lifespan of the connected machinery.
  • Energy Efficiency: By facilitating soft start and controlling torque transmission, fluid couplings improve the energy efficiency of the system. They reduce the inrush current during start-up, which can lead to significant energy savings in the long run.
  • Variable Speed Control: In some configurations, fluid couplings can be combined with Variable Frequency Drives (VFDs) to provide variable speed control. The VFD regulates the speed of the electric motor, while the fluid coupling ensures smooth and controlled power transmission to the driven equipment.

Overall, the combination of a fluid coupling with an electric motor is a versatile solution that finds applications in various industries. It allows for reliable and controlled power transmission, protecting both the motor and the driven equipment while improving system efficiency.

fluid coupling

Cost Implications of Using Fluid Couplings in Comparison to Other Power Transmission Methods

The cost implications of using fluid couplings in power transmission depend on various factors, including the application requirements, the size of the system, and the operational conditions. While fluid couplings offer several advantages, they may have different cost considerations compared to other power transmission methods like mechanical clutches, VFDs (Variable Frequency Drives), and direct mechanical drives.

1. Initial Investment:

The initial cost of a fluid coupling can be higher than that of a mechanical clutch or a direct mechanical drive. Fluid couplings contain precision components, including the impeller and turbine, which can impact their initial purchase price.

2. Maintenance Costs:

Fluid couplings are generally considered to have lower maintenance costs compared to mechanical clutches. Mechanical clutches have wear and tear components that may require more frequent replacements, leading to higher maintenance expenses over time.

3. Energy Efficiency:

Fluid couplings are highly efficient in power transmission, especially during soft-start applications. Their ability to reduce shock loads and provide a smooth acceleration can result in energy savings and operational cost reductions.

4. Space and Weight:

Fluid couplings are usually more compact and lighter than some mechanical clutches, which can be advantageous in applications with space constraints or weight limitations.

5. Specific Application Considerations:

The suitability and cost-effectiveness of fluid couplings versus other power transmission methods can vary based on specific application requirements. For example, in soft-start applications, fluid couplings may be the preferred choice due to their ability to reduce mechanical stress and protect connected equipment.

6. Lifespan and Reliability:

While the initial cost of a fluid coupling might be higher, their longevity and reliability can lead to lower overall life cycle costs compared to other power transmission methods.

In conclusion, the cost implications of using fluid couplings in power transmission depend on the particular application and the total cost of ownership over the equipment’s lifespan. Although fluid couplings may have a higher initial investment, their long-term reliability, energy efficiency, and lower maintenance costs can make them a cost-effective choice in many industrial applications.

fluid coupling

Can Fluid Couplings be Retrofitted into Existing Machinery?

Yes, fluid couplings can be retrofitted into existing machinery in many cases. Retrofitting is a process of adding new components or technologies to existing equipment to improve its performance or functionality. Fluid couplings are versatile and can often be integrated into various industrial machines and power transmission systems.

The process of retrofitting a fluid coupling involves several steps:

  1. Evaluation: Before retrofitting, a thorough evaluation of the existing machinery is necessary. Engineers need to assess the machine’s design, power requirements, and other relevant factors to determine the suitability of a fluid coupling.
  2. Compatibility: Fluid couplings should be compatible with the existing machine’s shaft, motor, and driven equipment. If necessary, modifications may be required to ensure a proper fit.
  3. Installation: The installation process involves mounting the fluid coupling onto the machine’s shaft and connecting it to the motor and driven equipment.
  4. Alignment: Precise alignment of the fluid coupling is crucial for optimal performance and to avoid issues such as vibration and wear.
  5. Testing: After installation, the retrofitted system undergoes testing to ensure that it functions as intended and meets the desired performance goals.

Retrofitting fluid couplings can offer various benefits, including:

  • Improved Energy Efficiency: Fluid couplings can enhance energy efficiency by reducing power losses and improving the overall power transmission system’s efficiency.
  • Enhanced Protection: Fluid couplings provide protection against shocks and overloads, safeguarding the machinery and its components from damage.
  • Reduced Maintenance: The smooth start and reduced stress on the machine during operation can lead to lower maintenance requirements and longer equipment lifespan.
  • Soft Start: Fluid couplings offer a soft start, which reduces the mechanical stress on the machine during startup, extending its life and minimizing downtime.

However, it is essential to involve qualified engineers and technicians for the retrofitting process to ensure proper installation, alignment, and performance of the fluid coupling in the existing machinery.

China Good quality Four-Axis Precision CNC Machining Hydrodynamic Fluid Coupling  China Good quality Four-Axis Precision CNC Machining Hydrodynamic Fluid Coupling
editor by CX 2024-04-29

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *